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Abstract
The group function theory by Tolpygo and McWeeny is a useful tool in treating quantum
systems that can be represented as a set of localized electronic groups (e.g. atoms, molecules or
bonds). It provides a general means of taking into account intra-correlation effects inside the
groups without assuming that the interaction between the groups is weak. For non-orthogonal
group functions the arrow diagram (AD) technique provides a convenient procedure for
calculating matrix elements 〈�|Ô|�〉 of arbitrary symmetrical operators Ô which are needed,
for example, for calculating the total energy of the system or its electron density. The total
wavefunction of the system � = Â

∏
I �I is represented as an antisymmetrized product of

non-orthogonal electron group functions �I of each group I in the system. However,
application of the AD theory to extended (e.g. infinite) systems (such as biological molecules or
crystals) is not straightforward, since the calculation of the mean value of an operator requires
that each term of the diagram expansion be divided by the normalization integral S = 〈�|�〉
which is given by an AD expansion as well. In our previous work, we cast the mean value
〈�|Ô|�〉 of a symmetrical operator Ô in the form of an AD expansion which is a linear
combination of linked (connected) ADs multiplied by numerical pre-factors. To obtain the
pre-factors, a method based on power series expansion with respect to overlap was developed
and tested for a simple 1D Hartree–Fock (HF) ring model. In the present paper this method is
first tested on a 2D HF model, and we find that the power series expansion for the pre-factors
converges extremely slowly to the exact solution. Instead, we suggest another, more powerful,
method based on a continued fraction expansion of the pre-factors that approaches the exact
solution much faster. The method is illustrated on the calculation of the electron density for the
2D HF model. It provides a powerful technique for treating extended systems consisting of a
large number of strongly localized electronic groups.

1. Introduction

The idea of localized electronic groups (EG) [1–5] has
been widely applied in various areas of quantum chemistry,
e.g. core and valence electrons in molecules or crystals,
electrons localized on atoms or ions in atomic or ionic
solids, core and bond electrons in strongly covalent materials,
etc [2, 6–11]. Similar partition ideas can also be used to derive
a particular embedding potential for the quantum cluster, when
the electronic system of the entire system is divided into an
infinite number of groups: one associated with the quantum
cluster and others with the environment region surrounding
the cluster [3, 12, 13]. Provided that the partition scheme

applied to the given system is physically (or chemically)
appropriate, one can assume that electrons belonging to the
given group spend most of their time in the spatial region of this
group. Therefore, to a good approximation, the wavefunction
of the whole system consisting of M electron groups can be
represented as an antisymmetrized product of wavefunctions
�I (X I ) of every individual group I :

�(X1, . . . , X M ) = Â
M∏

I=1

�I (X I ). (1)

Here X I = (x1, . . . , xNI ) is the coordinate set of NI electrons
in the I th group. Note that the single-electron coordinates in
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general include the spin index as well. The antisymmetrization
operator above is defined as

Â = 1

N !
∑

P∈SN

εP P̂, (2)

where the sum runs over all N ! elements P̂ (permutations) of
the symmetry group SN and N = N1 + N2 + · · · + NM is
the total number of electrons in the whole system. The factor
εP = ±1 corresponds to the parity of the permutation P̂ . It
is assumed that the group functions �I (X I ) are individually
antisymmetrized.

In a general case when group functions �I (X I ) are non-
orthogonal to each other, the mean value of a symmetrical
(with respect to electron permutations) operator Ô ≡
Ô(x1, . . . , xN ) is defined as

Ō = 〈�|Ô|�〉
〈�|�〉 . (3)

Using an explicit expression for the operator Â above,
the total wavefunction � , normalization integral S = 〈�|�〉
and any matrix element 〈�|Ô|�〉 are represented as a sum of
N ! terms. In particular, the normalization integral becomes a
sum of overlap integrals between group functions of different
groups. Earlier attempts to simplify such expansions and
associate each term with a diagram have been generalized
in [14–16] where the arrow diagram (AD) theory was
developed. Firstly, by exploiting a double coset decomposition
of the symmetrical group SN , all terms in the expansion are
grouped into many distinct families; secondly, each distinct
family is represented by a well-defined picture (arrow diagram)
and simple rules were developed to associate an analytical
expression with each AD.

When applying equation (3) to an extended system, the
ratio of two AD expansions, corresponding to 〈�|Ô|�〉 and
〈�|�〉, is obtained. Both expansions contain a very large
(infinite for an infinite system) number of terms and thus the
average Ō is difficult to calculate in practice. It was argued
in [17] that Ō can be represented as a sum of all linked
(connected) ADs only, Ō = 〈�|Ô|�〉c, thereby solving the
problem. However, it has been found recently [18] that this
representation for the mean value is only approximate, and one
has to multiply each linked diagram by a numerical pre-factor.
In general, these pre-factors differ from unity, and only when
the overlap between different groups is insignificant (i.e. the
group functions are extremely well localized in space), then
the pre-factors can be set to unity and the ‘linked-AD’ theorem
of [17] is recovered.

To obtain the pre-factors in a general case of arbitrary
overlap between the group functions, a method based on
the power series expansion of the pre-factors with respect
to overlap has been proposed recently [18]. The suggested
approach is quite general and can be applied to any systems
(including extended ones). The method was successfully
applied to a simple 1D ring Hartree–Fock (HF) model.
It seemed that a practical application of the AD theory
to arbitrary extended systems became a not-very-distant
possibility.

However, in the present paper we introduce a more general
2D HF problem and show that the pre-factors obtained by the
power series expansion method converge extremely slowly to
the exact solution that is obtained by a numerical calculation.
We find that very many terms are required in the expansion
of the pre-factors if the overlap is significant. This makes
the method inconvenient and cumbersome in practice. The
main purpose of this work is to suggest another, in our
view, much more powerful method, based on the continued
fraction expansion, to determine the pre-factors. We apply
both methods to an electron density of a 2D HF lattice system,
and compare their results with the well-converged numerical
solutions. We show that the pre-factors obtained by the
continued fraction method approach the exact values promptly
as the level of the fraction is increased.

This paper is organized as follows. In the subsequent
section we shall briefly review the AD theory for the reader’s
convenience and also introduce the necessary notations. More
detailed explanations can be found elsewhere [14, 15, 17]. In
section 3, we shall introduce the 2D HF lattice model and apply
the method of the power series expansion to it. In section 4, we
suggest an alternative method which allows presentation of the
pre-factors via continued fractions. Finally, conclusions are
drawn in section 5.

2. The arrow diagram theory

Let us consider a symmetric group SNI . Its elements permute
electronic coordinates belonging only to the I th group. Joining
together all such groups we obtain a subgroup S0 = SN1 ∪SN2 ∪
· · · ∪ SNM of SN . Any element of S0 interchanges electronic
coordinates only within the groups, i.e. performs only intra-
group permutations. The algebraic foundation of the AD
theory [14] is based on the double coset (DC) decomposition
of the complete symmetric group SN with respect to S0, which
enables us to identify all inequivalent inter-group permutations
P̂qT :

SN = 1

N0

∑

qT

μqT S0 P̂qT S0. (4)

Here the sum runs over all distinct types, q , of operations
for inter-group permutations as well as all distinct ways, T ,
of labelling actual groups (EGs) involved in it, and N0 =
N1!N2! · · · · · · NM ! is a numerical factor. P̂qT is a DC
generator, which contains only inter-group permutations and,
in general, can be constructed as a product of some primitive
cycles, each involving no more than one electron from each
group.

Each cycle is represented as a directed closed loop
connecting all groups involved in it. Thus, in general, each
permutation P̂qT can be drawn as an arrow diagram (AD)
containing a collection of closed directed loops. Several loops
may pass through the same group (depending on the number
of electrons in the group involved in the permutation P̂qT ).
If the groups involved in the diagram cannot be separated
without destroying the directed loops, the AD is called linked
or connected. If, however, this separation is possible then the
diagram is called non-linked or disconnected and it can be
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represented as a collection of linked parts. The decomposition
coefficients μqT can be calculated merely by counting arrows
entering and leaving each group in the AD [14].

Using the DC decomposition of the symmetrical group SN

of permutations, the following expansion of the normalization
integral is obtained [15]:

S = 〈Â�| Â�〉 = �
∑

qT

εqμqT 〈�|P̂qT |�〉 (5)

where � = N0/N ! is a numerical pre-factor and � =∏
I �I (X I ) is a product of all group functions. Equation (5)

gives an expansion of S in terms of diagrams identical to that
for SN . The matrix elements 〈�|P̂qT |�〉 are represented as
a product of reduced density matrices (RDMs) of electronic
groups involved in the permutation P̂qT integrated over
corresponding electronic coordinates. Note that a total
contribution of a non-linked AD is exactly equal to the product
of contributions associated with each of its linked parts [15].

Getting rid of the common factor �, the expansion for
S can also be written as a sum of contributions coming from
different clusters of groups:

S̃ = S

�
= 1 +

M∑

K=2

∑

A1<···<AK

SK (A1, A2, . . . , AK ) (6)

where SK (A1, A2, . . . , AK ) is the contribution of all ADs
that contain K different groups with the particular labelling
A1, A2, . . . , AK . The unity in the equation above corresponds
to the trivial permutation.

For convenience, the expansion in equation (6) will
be referred to as the normalization integral expansion. In
principle, in this expansion all groups of the entire system
participate. It has also been proven useful to introduce
a derivative object, S̃(T ), that is obtained from the above
expansion by retaining all the ADs which are associated only
with the groups from a manifold T = {A1, . . . , AK } of groups
(with labels A1, . . . , AK ), where K may be either finite or
infinite. If T comprises the whole system, we arrive at S̃ of
equation (6). It is also convenient to introduce a reciprocal
manifold Tr = [T ], i.e. an artificial system obtained by
‘removing’ from the entire system all groups comprising the
set T [17, 18]. Then, S̃(Tr ) = S̃([T ]) ≡ S̃[T ] is obtained
from equation (6) by retaining only ADs in which any of the
groups belonging to T is not present. Obviously, S̃ can be
considered as a particular case of S̃[T ] when T ≡ ∅ is empty.
Occasionally, to indicate explicitly which particular groups are
excluded, we shall use S̃[A1, . . . , AK ] instead of S̃[T ], where
T = {A1, . . . , AK }.

The unnormalized RDM-1 of the whole system, i.e. the
non-diagonal electron density:

ρ̄(x; x ′) = N
∫

�(x, x2, . . . , xN )

× �∗(x ′, x2, . . . , xN )dx2 · · · dxN (7)

can also be written as a matrix element of a certain symmetrical
one-particle operator [1, 2, 15] and thus represented via a
special diagrammatic expansion [15]. The latter expansion
can be constructed by considering the AD expansion for S̃

and then modifying each diagram by placing a small open
circle, representing the variables (x, x ′), in either of the three
following ways: (i) on a group not involved in the diagram; (ii)
on a group involved in the diagram (i.e. on the corresponding
vertex), and, finally, (iii) on an arrow in the diagram. Thus,
each AD in the S̃ expansion serves as a reference in building
up the entire AD expansion for the RDM-1.

As in the case of the normalization integral, the
contribution of any non-linked diagram for the RDM-1 is given
by a product of the contributions of all its linked parts. Since
only one open circle is used in each AD, any non-linked AD
of the RDM-1 is equal to the product of the contributions from
the single linked part with the circle and other non-linked parts
that do not contain the circle. The latter are the same as in the
reference expansion for the normalization integral. Therefore,
in general, the following representation for the RDM-1 is
valid [17]:

ρ̃(x; x ′) = ρ̄(x; x ′)
�

=
M∑

K=1

∑

A1<...<AK

S̃[A1, . . . , AK ]

×
∑

t

ρt
K (A1, . . . , AK ‖ x; x ′) (8)

where ρt
K (A1, . . . , AK ‖ x; x ′) is the sum of contributions

of all linked ADs with an open circle which are constructed
using the particular group labelling A1, A2, . . . , AK . The sum
over t takes account of the two positions of the open circle on
the reference AD: either on its arrow (case (iii) above) or its
group (case (ii)). Note that case (i) is also accounted for since
it corresponds to the case when K = 1. Thus, each linked AD
with the open circle, constructed from the set T of groups, is to
be multiplied by the sum of all possible normalization integral
ADs S̃[T ], constructed using the groups from the rest of the
system [T ].

The true RDM-1 should be calculated according to
equation (3) as [17]

ρ(x; x ′) = ρ̄(x; x ′)
〈�|�〉 =

M∑

K=1

∑

A1<...<AK

f[T ]

×
∑

t

ρt
K (A1, . . . , AK ‖ x; x ′) (9)

where

f[T ] = f[A1,...,AK ] = S̃[A1, . . . , AK ]
S̃

(10)

are numerical pre-factors which depend only on the chosen
set of groups T . Since the normalization integral S̃ is
represented via an AD expansion, equation (6), one can
see that the pre-factors are given as a ratio of two AD
expansions, each containing a very large (infinite) number of
terms for a large (infinite) system. Thus, the true RDM-1 is
represented as a sum of all linked ADs with the open circle,
ρt

K (A1, . . . , AK ‖ x; x ′), multiplied by numerical pre-factors,
f[A1,...,AK ] [18]. For systems containing a small number of
groups, the calculation of the pre-factors can be done explicitly
since the AD expansions would contain a finite, relatively
small, number of terms. However, the calculation of the pre-
factors possesses the main problem in applying the AD theory
to extended systems containing a large (or infinite) number of
groups.

3
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Figure 1. An extended 2D lattice of equally spaced one-electron
groups. The two solid crosses indicate a removed pair of
neighbouring groups. The dashed crosses indicate a removed cluster
of three adjacent groups in the shape of an angle.

A power expansion method for calculating the pre-factors
has been suggested recently [18]. It was successfully applied to
a 1D ring HF system for which the exact analytical solution can
be obtained. In the next section we shall check the applicability
of this method for a more general 2D lattice HF model.

3. 2D Hartree–Fock lattice model

3.1. The model

Let us consider an infinite lattice of equally spaced one-
electron groups as shown in figure 1. Each group is described
by a single real s-type normalized wavefunction ψi (x) (i =
1, 2, . . .) localized around the group centre. Spin is ignored in
this toy model that serves merely to help to analyse calculation
of the pre-factors.

All groups are identical, i.e. every localized function
ψi (x) can be obtained by a spatial translation of other
functions. Within the HF theory, the total wavefunction of
the lattice is represented by a single Slater determinant � ∝
det |ψ1(x1)ψ2(x2) · · · |. We assume that only the nearest-
neighbour functions overlap. Due to the symmetry of the
model, only one parameter, i.e. the overlap integral σ =∫
ψi (x)ψ j(x)dx between any neighbouring group pairs, is

required to characterize the system. Thus, the actual form of
ψi (x) is not needed.

3.2. Arrow diagram description of the electron density

Since the expressions for the pre-factors are the same for the
diagonal (x = x ′) and non-diagonal (x �= x ′) elements of the
electron density (9), we shall consider only the former case for
simplicity. Then, for the 2D lattice, its AD expansion has an
infinite number of terms. The first few terms of the expansion

are given as follows:

ρ(x) = S̃[•]
S̃

· ◦ + S̃[−]
S̃

·

+ S̃[�]
S̃

(

+
)

+ · · · . (11)

The first term is an open circle AD multiplied by a pre-factor
f[•] = S̃[•]/S̃. If the open circle AD is associated with group i ,
its contribution is given by ρ(◦)i (x) = ψ2

i (x). In the pre-factor
S̃ is the normalization integral of the total wavefunction of the
lattice, while S̃[•] is the normalization integral for an artificial
system in which one group (denoted by a dot •) is removed.
Finally, the index i should run over all groups in the lattice
(corresponding to all positions of the open circle). Hence, the
first term contributes f[•]

∑
i ρ

(◦)
i (x) to the density ρ(x).

The second term consists of a bubble diagram with an
open circle times a common pre-factor f[−] = S̃[−]/S̃. The
bubble diagram contributes ρ(bubble)

{i, j} (x) = −σψi (x)ψ j (x)
provided that the open circle is located on an arrow
connecting two nearest-neighbour groups i and j ; otherwise,
ρ
(bubble)
{i, j} (x) = 0. Then, S̃[−] is the normalization integral for

an artificial system in which the group pair {i, j} (denoted
by a dash) is removed. Thus, the total contribution of the
second term in equation (11) becomes 2 f[−]

∑
{i, j} ρ

(bubble)
{i, j} (x),

where we sum over all pairs of nearest groups, corresponding
to all possible positions of the open circle on the bubble ADs.
The factor of two is due to that each bubble diagram has two
possible positions of the open circle.

Similar explanations apply to other terms. Each term
consists of a sum of polygon diagrams with all possible
positions of the open circle times the corresponding common
pre-factor f[T ] = S̃[T ]/S̃. Each diagram with the circle
appears twice due to two possible directions of the arrows.
T is a ‘cluster’ of electronic groups involved in the polygon
diagram. The cluster is visualized as a polygon with
every vertex corresponding to the lattice site. S̃[T ] is the
normalization integral for the system in which all groups
comprising the cluster are removed. Due to the fact that
there is only overlap between nearest neighbours in our model,
adjacent vertices in the polygon must correspond to the nearest
neighbours. Thus, the removed groups forming the cluster are
the nearest groups. Note that for simplicity only two diagrams
are shown in the third term in equation (11) inside the brackets
corresponding to opposite directions of the arrows; in reality,
however, each diagram is equal to the sum of four diagrams
with four possible positions of the open circle (for the given
labelling of the vertices).

Owing to the translational symmetry of the 2D lattice
model, the pre-factors do not depend on the particular choice
of the removed cluster (e.g. its orientation), only on its shape.
Two simplest clusters, a nearest pair (denoted by a dash in
equation (11)) and an ‘angle’ consisting of three nearest groups
(to be denoted as ), are shown in figure 1 as examples. The
rest of the system will therefore be given in these two cases as
[−] and [ ], respectively.

4
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Figure 2. The first pre-factor f[•] = S̃[•]/S̃ in equation (11)
calculated numerically (solid line), using a power series expansion
up to the sixth order (dotted) and the continued fractions of up to the
first (dashed), second (dotted–dashed) and the third (long dashed)
level approximations.

Figure 3. The second pre-factor f[−] = S̃[−]/S̃ in equation (11)
calculated numerically (solid line), using a power series expansion
up to the sixth order (dotted) and the continued fractions of up to the
first (dashed), second (dotted–dashed) and the third (long dashed)
level approximations.

3.3. Numerical solution

We have already mentioned that the pre-factors f[T ] only
depend on the topology (picture) of the cluster T of groups,
not their particular position in the infinite lattice. Any pre-
factor is given as a ratio of two normalization integrals S̃[T ]
and S̃, one for the system [T ] and another for the whole system.
Within the HF theory, both normalization integrals can actually
be calculated analytically for the given overlap σ . Indeed, S̃
in the HF theory can be recast in the form of a determinant
of the overlap matrix M0 = ‖〈ψi |ψ j 〉‖ [1]. This can be
calculated, employing the periodic symmetry, in the k space
as a product of all the eigenvalues of the overlap matrix M0.
For an artificial system in which a set of neighbouring groups
T = {A1, A2, . . . , AK } is removed, the normalization integral
S̃[T ] can also be presented as a determinant of a matrix M
that can be obtained from M0 by replacing some of its nearest-

Figure 4. The third pre-factor in equation (11) calculated
numerically (solid line), using a power series expansion up to the
sixth order (dotted) and the continued fractions of up to the first
(dashed), second (dotted–dashed) and the third (long dashed) level
approximations.

neighbour overlaps with zero. Since M differs from M0 by a
defect matrix D = M−M0 of a finite rank, its determinant can
also be calculated exactly via M−1 = (1+M−1

0 D)−1M−1
0 . This

calculation is similar to the one used in the resolvent theory of
defects in crystals (see, e.g., [19]).

Although the route outlined above is in principle feasible,
in this paper we have used a simpler method based on a
numerical calculation of the necessary determinants for a finite
square system containing K × K lattice sites. Then S̃ is
calculated as a determinant of the matrix M0 for the system
with all sites present, while S̃[T ] can be calculated in a similar
way by taking away the necessary sites in the centre of the
square system. To calculate the pre-factors for the first few
terms in the expansion of the density (11), small clusters T
containing not more than six nearest removed sites are to be
considered only. Therefore, systems of relatively modest sizes
are only needed. We find in our calculations that the 21 × 21
lattice system is sufficient to simulate the extended 2D lattice.

The numerical solutions for the first three pre-factors are
shown in figures 2–4 by solid lines. These can be considered
as exact since a further increase of the size of the square lattice
system does not give any noticeable change for the pre-factors.
One can see that the pre-factors are some smooth functions of
σ . For small overlap (well-localized group functions) the pre-
factors are close to unity. With the increase of the overlap
between the neighbouring group functions, the pre-factors
quickly grow, shooting to infinity at σ = 1

4 . This particular
behaviour of the pre-factors is the consequence of our model
in which only the nearest-neighbour overlap is accounted for.
A similar effect was also observed in the case of the 1D ring
model in our previous work [18].

Another interesting observation which one can make is
that the pre-factors become generally larger with the increase
of the number of removed sites, i.e. one can notice that for any
σ we have

f[•] < f[−] < f[�] < · · · . (12)

5



J. Phys.: Condens. Matter 21 (2009) 474204 Y Wang and L Kantorovich

3.4. Method of power series expansion

In general, each pre-factor is a rational function of overlap σ ,
since it is a ratio of two polynomials, and thus is analytical
about σ = 0. Hence we can expand pre-factors in a power
series with respect to σ as suggested in [18]. Then we can
determine the expansion coefficients using special diagram
equations that can be formulated according to the spatial
structure of the system and as described below.

The idea of the method is based on a representation of the
normalization integral, S̃[T ], of the system [T ] (where T =
{A1, A2, . . . , AK } comprises a set of groups removed from
the initial system) via a series of terms containing ascending
numbers of connections of a chosen single group A ∈ [T ] with
its neighbours:

S̃[T ] = S̃[T + A] +
∑

T1⊂[T +A]
D̃(AT1)S̃[T + A + T1]. (13)

The first term on the right-hand side contains all the ADs that
can be constructed out of the groups of the set [T + A], i.e. the
group A is not involved in either of them. The sum in the
second term contains all the ADs which are formed by the
group A and any groups from the rest of the system [T + A].
This sum picks out various manifolds T1 ⊂ [T + A] containing
one, two, three, etc, groups. Then, a sum of all possible ADs
constructed using A and every group from the manifold T1

is denoted D̃(AT1). Note that ADs in D̃(AT1) may contain
non-linked diagrams as well. Then, every AD in D̃(AT1) is
multiplied by all possible ADs formed out of the rest of the
groups, S̃[T + A + T1], i.e. the latter is obtained by all ADs
left after ‘removing’ the set T1 from the set [T + A].

Let us now apply the above equation to the 2D lattice
model for which the exact solution is known from the
numerical calculation as explained in the previous subsection.
We start by choosing T = ∅ (empty) and A being an arbitrary
group (say, group 1). Then, we obtain from equation (13)

S̃ = S̃[•] − 4σ 2 S̃[−] − 8σ 4 S̃[�] + · · · . (14)

Here the first term consists of all ADs, S̃[•], based on groups
from the rest of the system, [T + A] ≡ [•], which is an
artificial lattice with the chosen group 1 (denoted by the dot)
removed. The second term in the series is constructed of all
bubble ADs (each contributing −σ 2) between group 1 and
all its four neighbours times the sum of all normalization
integral ADs, S̃[−], corresponding to an artificial lattice in
which a pair of neighbouring groups (denoted by a dash) is
removed. The third term in the series is based on all square
ADs (each contributing −2σ 4, the factor of two corresponding
to two possible directions of the loops) connecting group 1 to
its neighbouring three groups times all possible normalization
integral ADs, S̃[�], in which groups from the rest of the system
are involved. There are four squares possible having group 1 at
one of its corners connected to three nearest neighbours, which
accounts for an additional factor of four. Similarly other terms
in the series can be constructed. They consist of N-vertex
polygons in which each side connects nearest neighbours on
the lattice. The sites of the polygons will be shown graphically
by a picture without particular labelling of the sites since, as

was mentioned previously, the result depends only on the shape
of the corresponding clusters of sites, not their actual position
in the lattice.

Dividing both sides of equation (14) by S̃, we obtain the
corresponding equation for the pre-factors:

1 = f[•] − 4σ 2 f[−] − 8σ 4 f[�] + · · · . (15)

Repeating the above procedure for the system T = • and a
group A being the nearest neighbour of the group 1 (that is, of
the dot), we similarly obtain

f[•] = f[−] − 2σ 2 f[ ] − σ 2 f[ ] − 4σ 4 f[ ] + · · · , (16)

where pictures in the square brackets denote the removed
clusters, i.e. the sets T + A + T1 in equation (13).

Continuing this procedure, one can derive an infinite series
of equations in which every time a new set of pre-factors
appear. For instance

f[−] = f[ ] − σ 2 f[ ] − σ 2 f[ ] − σ 2 f[�] + · · · (17)

f[−] = f[ ] − 2σ 2 f[ ] − σ 2 f[ ] + · · · (18)

f[ ] = f[�] − 2σ 2 f[ ] + · · · . (19)

Next, we expand every pre-factor in a power series with
respect to σ :

f[T ] = 1 +
∞∑

n=1

Cn[T ]σ n (20)

where T denotes the removed cluster. Note that the expansion
starts from unity for any [T ] since f[T ] = 1 for zero
overlap (σ = 0). Substituting these expansions into the
above diagram equations, one can recursively determine the
expansion coefficients up to a certain order by comparing terms
with the same power of σ . For instance, it follows from
equation (15) that C1[•] = 0, C2[•] = 4, C3[•] = 4C1[−],
C4[•] = 4C2[−] + 8, etc. Similarly from equation (16) we
obtain C1[−] = C1[•] = 0, C2[−] = C2[•] + 2 + 1 = 7, etc.
Combining these relations, new coefficients can be obtained,
e.g. C3[•] = 0, C4[•] = 36, and so on.

Equations (17)–(19) enable us to calculate more coeffi-
cients. Following this line of reasoning, we obtain the power
series expansions up to sixth order for the first three pre-factors
in equation (11):

f[•] = 1 + 4σ 2 + 36σ 4 + 400σ 6 + · · · (21)

f[−] = 1 + 7σ 2 + 70σ 4 + 807σ 6 + · · · (22)

f[�] = 1 + 12σ 2 + 144σ 4 + 1804σ 6 + · · · . (23)

To obtain higher-order terms in the series expansions by
this method, one has to consider more diagram equations which
bring more pre-factors in.

The series expansions obtained above are compared with
the exact numerical solutions in figures 2–4, respectively. One
can see that, in the cases of small and intermediate overlap,
reasonable approximations to the exact solutions for the pre-

6
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factors are obtained by this method. It is also obvious that
one has to go to higher orders in the series expansions when
the overlap is much larger. Indeed, for large values of σ ,
pre-factors obtained by the power series expansion method
converge extremely slowly to the exact solution. Therefore,
the method becomes impractical in this case as more terms in
the expansions are to be derived. In general, this calculation is
extremely cumbersome.

In section 4, another method will be suggested for the
calculation of the pre-factors based on continued fractions.

4. Method of continued fractions

4.1. General idea of the method

Our starting point is the following general expression for the
normalization integral ADs written for the system [T ] from
which some of the groups, comprising the manifold T , have
been removed [18]:

S̃[T ] = S̃(	T )S̃[T +	T ]
+

∑

T1⊂	T

∑

T2⊂[T +	T ]
D̃(T1T2)

× S̃(	T − T1)S̃[T +	T + T2]. (24)

Note that equation (13) is a particular case of this equation.
Here 	T ⊂ [T ] is some arbitrary set of groups from the
system [T ] and S̃(	T ) denotes normalization integral ADs for
the group set 	T , including the trivial term (unity). Thus the
first term in the above equation corresponds to all ADs that
can be made separately from the sets 	T and [T + 	T ]. In
the next term on the right-hand side we sum over all possible
sets T1 and T2 of groups, one taken from 	T and another
from [T + 	T ]. Thus, all ADs in the second term are
constructed using groups from both sets 	T and [T + 	T ].
The latter ADs are presented explicitly as a product (i.e. via
non-linked ADs) of simpler ADs. Namely, the ‘interaction’
term D̃(T1T2) represents the sum of all possible ADs which
can be constructed using every group from T1 and T2. Note
that D̃(T1T2) may contain non-linked ADs as well, in which
case each part of it must contain at least one group from T1 and
one from T2. Other terms have similar meaning: S̃(	T − T1)

contains all ADs constructed using groups from the set	T −T1

obtained by taking away (removing) groups of the set T1 from
the set 	T , while S̃[T + 	T + T2] contains all ADs due to
groups from the system [T +	T + T2]. The expression above
is valid for any choice of 	T .

According to the definition of D̃(T1T2), its lowest order
with respect to overlap is equal to the number of groups nT1+T2

in the combined set T1+T2. Since two other factors S̃(	T−T1)

and S̃[T +	T +T2] contain all ADs including unity, each term
in the sum in equation (24) starts from terms that are of the
order nT1+T2 with respect to overlap. Effectively, equation (24)
results in an expansion of S̃[T ] with respect to overlap as in
section 3.4.

However, instead of following the series expansion route,
we can divide both sides of equation (24) by S̃[T ] and then

solve it for the fraction S̃[T +	T ]/S̃[T ] as shown below:

f [T +	T ]
[T ] ≡ S̃[T +	T ]

S̃[T ] =
[

S̃(	T )

+
∑

T1⊂	T

S̃(	T − T1)
∑

T2⊂[T +	T ]
D̃(T1T2) f [T +	T +T2]

[T +	T ]
]−1
.

(25)

In the left-hand side we have a ratio of two normalization
integral AD expansions corresponding to the manifolds [T +
	T ] and [T ] that differ by a set of groups 	T . On the
right-hand side we have fractions corresponding to different
manifolds [T + 	T + T2] and [T + 	T ], that differ by a set
of groups T2. In the second sum on the right-hand side of the
above equation we take account of all possible choices of the
set T2 ⊂ [T + 	T ], and the summation starts from a single
group.

Recall that the expression for D̃(T1T2) scales with respect
to overlap at least as the number of groups in the set T1 + T2.
The fraction f [T +	T +T2]

[T +	T ] is some well-defined function of the
overlap that is equal to unity in the case of zero overlap.
Therefore, the sum over T2 above can be considered as an
expansion in terms of the overlap, and only several first terms
can normally be retained since the group functions are required
to be well localized, e.g.

∑

T2⊂[T +	T ]
D̃(T1T2) f [T +	T +T2]

[T +	T ]

=
∑

B1⊂[T +	T ]
D̃(T1 B1) f [T +	T +B1]

[T +	T ]

+
∑

{B1,B2}⊂[T +	T ]
D̃(T1 B1 B2) f [T +	T +B1+B2]

[T +	T ]

+
∑

{B1,B2,B3}⊂[T +	T ]
D̃(T1 B1 B2 B3) f [T +	T +B1+B2+B3]

[T +	T ] + · · · .

(26)

Here B1, B2, etc, are groups from the system [T + 	T ], and
the notations like {B1, B2}, {B1, B2, B3}, etc, correspond to
summing over all non-equivalent pairs, triplets, etc.

Expressions similar to equation (25) can now be written
for each of the fractions that appear on the right-hand side
of equation (25) by setting T + 	T → T and T2 → 	T
on the left-hand side of it. Note that in this case a smaller
system, [T +	T ], than initially (which was [T ]) is considered.
Substituting the expressions for the fractions f [T +	T +T2]

[T +	T ] back
into the right-hand side of the original equation (25), we obtain
an expression for the original fraction, f [T +	T ]

[T ] , at the second
level. If the process is repeated n times, it leads to a continued
fraction of a quite complicated structure with n levels. To
terminate this process, one can set up all the fractions at the
last level to unity. We shall return to this point later on. Note
only that a better approximation can be achieved if the last level
fractions are expanded in a power series with respect to the
overlap up to a certain order.

When it is clear how the continued fraction can be
constructed, we can turn our attention to calculating the pre-
factors. Indeed, the required expressions for the pre-factors
f[	T ] are obtained by simply choosing T = ∅ (empty) in the

7
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initial expression (i.e. at the first level) for the fraction and then
replacing 	T → T :

f[T ] ≡ f [T ]
[∅] =

[
S̃(T )+

∑

T1⊂T

S̃(T − T1)

×
∑

T2⊂[T ]
D̃(T1T2) f [T +T2]

[T ]
]−1

. (27)

The first-level approximation for the pre-factor f[T ] is obtained
if only a finite number of terms are considered in the T2 sum
above corresponding to a certain order with respect to overlap,
and all fractions on the right-hand side, f [T +T2]

[T ] , are set to unity.
At the second level, one uses equation (25) to represent the
fractions f [T +T2]

[T ] . Again, only some finite numbers of terms
are retained in the corresponding T2 sum. This process is
continued until the required number of levels is achieved. At
the last level all fractions are set to unity.

Let us analyse the obtained continued fraction expression
for the pre-factor. In f[T ] = S̃[T ]/S̃ two sets of groups
are used: the whole system and the system [T ] obtained by
removing all groups of the set T from it. We know from
equation (12) that the ratios like f[T ] differ more from unity if
the difference in the two sets is greater. The continued fraction
expansion allows one to re-express the pre-factor in question
via fractions f [R]

[R′ ] = S̃[R]/S̃[R′] that contain less difference
between the two sets R and R′. Since the sum over T2 in
equations (25) and (27) is terminated at sets T2 that have a
rather small number of groups, as equation (26) illustrates, the
ratios f [R]

[R′ ] will contain close sets R and R′ even in the case
when the initial set T in f[T ] is large. By going to deeper
levels while constructing the continued fraction, the sets R and
R′ become smaller and smaller, i.e. more and more groups
are removed from the initial system. The small difference
between the two sets ensures that setting the corresponding
ratios f [R]

[R′ ] to unity would be a good approximation. This
general reasoning justifies the method we suggest to terminate
the fraction by setting all such ratios at the last level simply to
unity. A better approximation can be obtained if the last level
fractions are expanded in a power series up to a certain finite
order as was mentioned earlier.

As an example, let us work out explicitly an expression
for f[T ] up to the third level keeping terms at least of the third
order with respect to overlap. At the first level we use the
equation (27)

f[T ] =
{

S̃(T )+
∑

A1∈T

S̃(T − A1)

[ ∑

B1∈[T ]
D̃(A1 B1) f [T B1]

[T ]

+
∑

{B1,B2}∈[T ]
D̃(A1 B1 B2) f [T B1 B2]

[T ] + · · ·
]

+
∑

{A1,A2}∈T

S̃(T − A1 − A2)

×
[ ∑

B1∈[T ]
D̃(A1 A2 B1) f [T B1]

[T ] + · · ·
]

+ . . .

}−1

(28)

where D̃(A1 B1), D̃(A1 A2 B1), etc, are sums of ADs starting
from the second and third orders with respect to overlap,
respectively. We have also used a shorter notation for the
combined sets such as T + A + B ≡ T AB .

It is seen from the above expression, written only at the
first level, that we need now the corresponding expressions
for the following two ratios, namely f [T A]

[T ] and f [T AB]
[T ] , where

A, B ∈ [T ]. These can be worked out explicitly from
equation (25), and we obtain

f [T A]
[T ] =

{

1 +
∑

B1∈[T A]
D̃(AB1) f [T AB1]

[T A]

+
∑

{B1,B2}∈[T A]
D̃(AB1 B2) f [T AB1 B2]

[T A] + · · ·
}−1

(29)

f [T AB]
[T ] =

{

S̃(AB)+
∑

C1∈[T AB]
[D̃(AC1)

+ D̃(BC1)+ D̃(ABC1)] f [T ABC1]
[T AB]

+
∑

{C1,C2}∈[T AB]
[D̃(AC1C2)+ D̃(BC1C2)

+ D̃(ABC1C2)] f [T ABC1C2]
[T AB] + · · ·

}−1

(30)

where S̃(AB) contains all ADs (including the trivial one,
i.e. the unity) between two groups A and B . If we wish to
terminate the continued fraction at the third level, we still need
expressions for the ratios in equations (29) and (30). These
can all be obtained similarly to the ones given above. In fact,
in all the ratios we have encountered above, namely f [T AB1]

[T A] ,

f [T AB1 B2]
[T A] , f [T ABC1]

[T AB] and f [T ABC1C2]
[T AB] , the two sets in the super-

and subscripts differ by either one or two groups only, so that
the same expressions (29) and (30) can formally be used again.
The only difference is that at this level of the continued fraction
we set all the ratios on the right-hand side to unity:

f [T AB1]
[T A] =

{

1 +
∑

C1∈[T AB1]
D̃(B1C1)

+
∑

{C1,C2}∈[T AB1]
D̃(B1C1C2)+ · · ·

}−1

(31)

f [T ABC1]
[T AB] =

{

1 +
∑

D1∈[T ABC1]
D̃(C1 D1)

+
∑

{D1,D2}∈[T ABC1]
D̃(C1 D1 D2)+ · · ·

}−1

. (32)

The corresponding expressions for the ratios f [T AB1 B2]
[T A] and

f [T ABC1C2]
[T AB] are obtained similarly from equation (30). It is

clearly seen that for any manifold T the ratios in the continued
fraction expression do not differ by more than two groups in
this approximation. In order to improve the approximation for
the pre-factor f[T ], one has to retain the corresponding ratios
at the third level and work out the corresponding expressions
for them. In addition, one has to keep more terms in the AD
expression with respect to the overlap at each level which will
result in more fractions appearing at each level. Generally, the
AD expansion at each level may be terminated earlier as deeper
levels are considered.

In section 4.2 we shall illustrate the continued fraction
method on the 2D lattice model.

8
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4.2. Continued fractions for the 2D lattice model

Let us consider the 2D lattice model. To illustrate how the
continued fraction method works, we shall obtain a two-level
fraction for f[•] and a one-level fraction for f[−].

For the 2D lattice model with only nearest-neighbour
overlap, the first three possible ADs in D̃(T1T2) (restricted
by the numbers of groups in sets T1 and T2), are: a bubble
AD, a twin-bubble AD (non-linked) and a square AD, which
contribute −σ 2, σ 4 and −2σ 4, respectively.

Noting that S̃(∅) = S̃(•) = 1, we start from T = • in
equation (27) to obtain

f[•] = {1 − 4σ 2
[−] − 8σ 4
[�] + · · ·}−1. (33)

where 
[cluster] = f [cluster]
[•] . In fact, this equation is the same

as equation (15), but written differently. If we assume that
every ratio in the denominator of equation (33) equals unity
and only terms up to fourth order with respect to overlap are
retained, then the following one-level fraction approximation
for f[•] is obtained:

f[•] � 1

1 − 4σ 2 − 8σ 4
.

Next, using equation (25), we can write the two fractions
in the denominator of equation (33) in more detail as


[−] = {1 − 2σ 2γ1[ ] − σ 2γ1[ ] − 4σ 4γ1[ ] + · · ·}−1.

(34)
with γ1[cluster] = f [cluster]

[−] and


[�] = {(1 − 2σ 2)− 4σ 2(1 − σ 2)γ2[ ] − 2σ 2γ2[ ]
+ σ 4(2γ2[ ] + 2γ2[ ] + 2γ2[ ]
+ 4γ2[ ] + 2γ2[ ])− 2σ 4(γ2[ ] + 2γ2[ ])
− 4σ 4(1 − σ 2)γ2[ ] + · · ·}−1. (35)

with γ2[cluster] = f [cluster]
[�] . Note that equation (34) can also

be obtained directly from equation (16). After substituting
equations (34) and (35) into equation (33), keeping only terms
up to the fourth order with respect to overlap and assuming
that γ1[cluster] = γ2[cluster] = 1, we obtain the following
two-level fraction approximation for f[•]:

f[•] � 1

1 − 4σ 2

1−3σ 2−4σ 4 − 8σ 4

1−8σ 2+6σ 4

.

This process can be continued.
Similarly one can consider other pre-factors. For instance,

the first level expression for the second pre-factor, f[−], is
obtained from equation (27) by considering T to be two nearest
lattice sites (i.e. a ‘dash’ in our cluster notation):

f[−] = {(1 − σ 2)− 4σ 2γ1[ ] − 2σ 2γ1[ ]
+ σ 4(2γ1[�] + 2γ1[ ] + 4γ1[ ] + γ1[ ])
− 2σ 4(4γ1[ ] + 2γ1[�])+ · · · .}−1 (36)

where γ1[cluster] was introduced earlier in this subsection.
Assuming γ1[cluster] = 1 and keeping only terms up to fourth
order with respect to overlap, we obtain the following one-level

fraction approximation for f[−]:

f[−] � 1

1 − 7σ 2 − 3σ 4
.

Following the scheme outlined in section 4.1, we have
worked out explicit expressions for the first three pre-factors
appearing in equation (11) up to the third-level fraction
approximation. We shall not give here the derived expressions
in detail as they are rather cumbersome. Using these
expressions, the three pre-factors have been calculated as
functions of the overlap integral σ .

The results of these calculations are shown in figures 2–
4. Firstly, we see that for all three pre-factors the first-
level fraction approximation performs only slightly worse
than the power series expansion calculated up to sixth order.
However, already the second-level fractions give a much better
approximation than the power series expansion. Secondly,
higher-level fractions give better results than the lower-level
fractions. Finally, already the third-level fraction formulae
give a reasonable approximation to the numerical solutions for
all overlaps except near the singularity. Since the singularity
in the pre-factors is an artefact of our nearest-neighbour
approximation, we believe that the discrepancy would be much
smaller if the overlap between more distant neighbours is also
accounted for.

5. Conclusions

In this paper we have analysed the power series expansion
method for the pre-factors in the AD expansion for the
reduced density matrices (RDM) suggested in our previous
paper [18]. By considering a 2D Hartree–Fock lattice model
with the nearest-neighbour overlap, we find that the power
series expansion converges to the correct result (obtained using
a numerical calculation) very slowly, especially in the region
of significant overlap. Although a better approximation can
always be constructed employing more terms in the expansion,
the calculation becomes very tedious and thus impractical.

Instead, we suggest a different method based on the
continued fraction expansion for the pre-factors. Explicit
expressions have been worked out for this method up to the
third level of the fractions.

Applying this method to the same 2D lattice model, we
demonstrate that the new method converges to the correct result
much faster for any, even significant, overlap. The main reason
why this method works better is this. A numerical calculation
shows that the fraction f [T1]

[T2] , equation (25), differs less from
unity if the smaller manifold, [T1] = [T2 + 	T ], is closer to
the other one, [T2]. The more significant is overlap, the more
terms are needed in the AD expansion of the ratio f [T1]

[T2] . The

whole point of representing the pre-factors f[T ] ≡ f [T ]
[∅] via

a continued fraction is that it is expressed via ratios f [T1]
[T2] in

which the manifolds [T1] and [T2] are closer to each other. As
a result, if one goes to a sufficiently high level fraction, the AD
expansion for the ratios at the final level may converge very
quickly with the overlap, so that fewer terms will be required.
In fact, in the above consideration, we just used the first term in
the expansion of the ratios at the final level at which the fraction

9
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is terminated, i.e. f [T1]
[T2] � 1, and found for our 2D lattice

model that already at the second level the continued fractions
converge better to the correct result for the first three pre-
factors than their sixth-order power series expansions. Note
that a similar consideration can also be applied to the much
simpler 1D ring model considered in [18]. It can then be shown
analytically, without doing any numerical calculations, that the
continued fraction converges precisely to the exact result at any
value of the overlap.

We believe that the proposed method of continued frac-
tions is a practical tool in developing approximate expressions
for the required pre-factors in the AD expansions of arbitrary
matrix elements of symmetric operators (like density matrices)
in many-body quantum chemistry. The formalism developed
here can be used for developing corrections to the correspond-
ing formulae developed previously in [17] where all the pre-
factors were assumed to be equal to unity. One of the promis-
ing applications of the AD theory that is being looked at in our
laboratory is the theory of cluster embedding.
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